
Calling shapelib from VB6
Invoking shapelib functions from Visual Basic 6 is straightforward; however, to be successful you
must use indirection techniques (pointers) that may be unfamiliar to many VB programmers.
Shapelib is a C API and, as such, makes liberal use of pointers in its data structures, function
arguments and function return values. In those instances where pointers refer to native VB data
types (Bytes, Longs, Doubles, among others), passing a pointer in C is equivalent in VB to
passing ByRef, and no further work on your part is required. Passing a char* pointer in C is
equivalent in VB to passing a string ByVal. In VB, a string passed ByVal is equivalent to passing
a pointer to the first character of the string. (A ByRef-passed string in VB is actually a pointer to a
pointer).

Shapelib contains a SHPObject structure (Type, in VB) that must be handled carefully. The C
definition of SHPObject is:

typedef struct
{
 int nSHPType;
 int nShapeId; /* -1 is unknown/unassigned */
 int nParts;
 int *panPartStart;
 int *panPartType;
 int nVertices;
 double *padfX;
 double *padfY;
 double *padfZ;
 double *padfM;
 double dfXMin;
 double dfYMin;
 double dfZMin;
 double dfMMin;
 double dfXMax;
 double dfYMax;
 double dfZMax;
 double dfMMax;
} SHPObject;

*padfX, *padfY, *padfZ, and *padfM are pointers to arrays of doubles of a length defined by
nVertices. The actual arrays are not stored in this struct, only pointers to some other locations in
memory where the actual arrays live. To define this struct in VB we use:

Public Type SHPObject
 nSHPType As Long
 nShapeId As Long '/* -1 is unknown/unassigned */
 nParts As Long
 panPartStart As Long
 panPartType As Long
 nVertices As Long
 padfX As Long ' pointer to array of doubles
 padfY As Long
 padfZ As Long
 padfM As Long
 dfXMin As Double
 dfYMin As Double
 dfZMin As Double
 dfMMin As Double

 dfXMax As Double
 dfYMax As Double
 dfZMax As Double
 dfMMax As Double
End Type

In this VB declaration, *padfX is translated as a Long value, not an array and certainly not an
array of Doubles. It will be up to us to interpret padfX, Y, Z, and M as pointers.

To get a pointer to an array of Doubles we use the following technique:

Dim dblArray(10) as Double
Dim pdblArray as Long
pdblArray = VarPtr(dblArray(0))

VarPtr(dblArray(0)) returns a pointer to the first element of dblArray, which is exactly what
shapelib expects. (On my machine I get a value for pdblArray of 1797056: the memory address
for this first array element).

VarPtr’s inverse function is to recover our array from its pointer. To do this we use the Win32 API
function RtlMoveMemory, commonly aliased as CopyMemory or MoveMemory.

Declare Sub MoveMemory Lib "kernel32" Alias "RtlMoveMemory" _
 (pDest As Any, pSource As Any, ByVal dwLength As Long)
Call MoveMemory(ByRef dblArray(0), ByVal pdblArray, _
 Len(dblArray(0)) * (UBound(dblArray) + 1)

Arguments for MoveMemory are a pointer to a destination memory location, a pointer to a source
memory location, and the number of bytes to copy. In our example, the destination is the
memory location used by the first element of dblArray (the rest of the array follows,
uninterrupted). DblArray(0) is simply a single value of type Double, and passing it ByRef is
equivalent, in VB, to passing its pointer. That is exactly what we want. The second argument is
the memory pointer, which we have stored in pdblArray. We must pass this ByVal in order to
pass its literal value (which we have decided to interpret as a pointer). Failing to pass pdblArray
ByVal (i.e., if we pass it ByRef) will cause our program to blow up since we would actually be
passing a pointer to our pointer. That is, we would be passing the address for a block of memory
exactly 4 bytes wide (the size of a VB Long) containing the literal value of pdblArray. If we try to
copy our whole array beginning at this memory location, we will overrun the 4 bytes allocated for
pdblArray and overwrite memory used for who-knows what else. Our program will almost
certainly crash.

The number of bytes we copy is calculated as the size of an array element multiplied by the
number of elements in the array, calculated here as Len(dblArray(0)) * (UBound(dblArray) + 1).
Pay careful attention to the number of bytes you instruct MoveMemory to copy, since you are
copying directly to program memory and mistakes will have dire consequences. (well, only if you
consider your program crashing dire. These are the kinds of activities engaged in by C/C++
programmers that your mother warned you about).

These are the basic techniques for using shapelib from VB. The accompanying source code
contains a declaration module with all the shapelib 1.2-10 functions, structures, constants, and
enumerations defined in Visual Basic. A test program is included which creates a simple
shapefile and manipulates its data. The code is heavily commented with many Debug.Print
statements. It is intended to be stepped through in debug mode to observe how the shapelib
functions should be called.

Please send any comments and error reports to dgancarz@cfl.rr.com.

7 December 2003

mailto:dgancarz@cfl.rr.com

	Calling shapelib from VB6

